98 research outputs found

    Preface: Computational Poromechanics

    Get PDF
    This special issue of the International Journal for Multiscale Computational Engineering is dedicated to the field of computational poromechanics. We refer to the term poromechanics as a discipline that studies the coupled responses of multiphase materials that contain voids filled with one or multiple types of fluids. Materials fitting this description include many geological materials (e.g., sand, clay, and rock), live matters (e.g., bones, skins, periodontal ligament), and manufactured materials (e.g., concrete, diaper cores, and polymeric gels), among others. Inside a porous medium, the fluids in the voids may either be trapped inside the isolated pores or they may diffuse in the connected pore space. The multiple fluid constituents may also trigger chemical reactions among themselves or with the solid constituents. As a result, the deformation of the solid skeleton and the diffusion of the pore fluid are processes that strongly in- fluence each other. This coupling effect is important for many engineering applications central to our daily lives. For instance, the buildup of the pore fluid pressure may lead to the fracture of the solid constituent, which in return allows hydro-carbon to be extracted, as in the case of hydraulic fracture. If an enormous amount of fluid is injected underground, the resultant pore pressure buildup may also reactivate previously stable faults due to the reduction of effective mean pressure. Meanwhile, the hydro-mechanical coupling effect has also been used to characterize hydraulic properties that are difficult to obtain otherwise. For instance, one may indirectly estimate the effective permeability of the porous medium by examining the stress history of a given load, such as bending load applied on a beam or indentation applied on a poro-elastic half-space. The aforementioned engineering applications are just a few examples in which the knowledge of poromechanics is crucial. In recent years, the advancement of computational resource and the availability of more accurate and detailed experimental data and in situ data has made it possible to develop models with a new level of sophistication and a justifiable complexity. Meanwhile, new engineering challenges, such as geological disposal of captured carbon dioxide, nuclear waste, and the development of horizontal wellbores for hydraulic fractures, and forensic geotechnical engineering have motivated a growing interest to incorporate numerical modeling as an integral part of engineering design and analysis.This special issue provides a forum for presenting the state-of-the-art computational modeling for porous media

    A unified method to predict diffuse and localized instabilities in sands

    Get PDF
    A simplified method to analyse diffuse and localized bifurcations of sand under drained and undrained conditions is presented in this paper. This method utilizes results from bifurcation analysis and critical state plasticity theory to detect the onset of pure and dilatant shear band formation, static liquefaction and drained shear failures systematically. To capture the soil collapse observed in experiments, the instability state line concept originated by Chu, Lo and Lee in 1993 is adopted. Emphasis is given to examine how the presence of pore-fluid may facilitate or delay instability after yielding occurs. The predictions of instabilities are compared with experimental data from triaxial compression tests on Toyoura and Changi sands

    Modeling deformation bands in thermal softening and fluid infiltrating porous solids at finite strain

    Get PDF
    Onset and modes of deformation bands are often influenced by nonmechanical loading triggered by seepage of pore fluid and thermal effects. Experimental evidence has established that temperature changes can alter the shape and size of the yield surface and cause shear band to form in geomaterials that are otherwise stable. Understanding this thermo-hydro-mechanical responses are important for many engineering applications, such as carbon dioxide storage and extraction of hydrocarbon in which hot or cool fluid are often injected into deep porous rock formations. The purpose of this research is to simulate this coupled process using a thermoporoplasticity model with extended hardening rules. A key feature of this model is that evolution of internal variables is governed by both the plastic dissipation and the change of temperature. An adaptively stabilized monolithic finite element model is proposed to simulate the fully coupled thermo-hydro-mechanical behavior of porous media undergoing large deformation. We first formulate a finite-deformation thermo-hydro-mechanics field theory for nonisothermal porous media. The corresponding (monolithic) discrete problem is then derived adopting low-order elements with equal order of interpolation for the three coupled fields. A projection based stabilization procedure is designed to eliminate spurious pore pressure and temperature modes due to the lack of the two-fold inf–sup condition of the equal-order finite elements. To avoid volumetric locking due to the incompressibility of solid skeleton, we introduce a modified assumed deformation gradient in the formulation for nonisothermal porous solids. Finally, numerical examples are given to demonstrate the versatility and efficiency of this model

    A phase field framework for capillary-induced fracture in unsaturated porous media: Drying-induced vs. hydraulic cracking

    Get PDF
    This manuscript introduces a unified mathematical framework to replicate both desiccation-induced and hydraulic fracturing in low-permeable unsaturated porous materials observed in experiments. The unsaturated porous medium is considered as a three-phase solid–liquid–gas effective medium of which each constituent occupies a fraction of the representative elementary volume. As such, an energy-minimization-based phase-field model (PFM) is formulated along with the Biot’s poroelasticity theory to replicate the sub-critical crack growth in the brittle regime. Unlike hydraulic fracturing where the excess pore liquid pressure plays an important role at the onset and propagation of cracks, desiccation cracks are mainly driven by deformation induced by water retention. Therefore, the wettability of the solid skeleton may affect the evolution of the capillary pressure (suction) and change the path-dependent responses of the porous media. This air–water–solid interaction may either hinder or enhance the cracking occurrence. This difference of capillary effect on crack growth during wetting and drying is replicated by introducing retention-sensitive degradation mechanisms in our phase field fracture approach. To replicate the hydraulic behaviors of the pore space inside the host matrix and that of the cracks, the path-dependent changes of the intrinsic permeability due to crack growth and porosity changes are introduced to model the flow conduit in open and closed cracks. Numerical examples of drying-induced and hydraulic fracturing demonstrate the capability of the proposed model to capture different fracture patterns, which qualitatively agrees with the fracture mechanisms of related experiments documented in the literature
    • …
    corecore